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ABSTRACT 

Hardware accelerators are increasingly used to extend the 
computational capabilities of baseline scalar processors to 
meet the growing performance and power requirements of 
embedded applications. The challenge to the designer is 
the extensive human effort required to identify the 
appropriate kernels to be mapped to gates, and to 
implement a network of accelerators to execute the 
kernels. In this paper, we present a methodology to 
automate the selection of streaming kernels in a 
reconfigurable platform based on the characteristics of the 
application. The methodology is based on a flow graph 
that describes the streaming computations and 
communications. The flow graph is used to efficiently 
identify the most profitable subset of streaming kernels 
that optimize performance without exceeding the available 
area of the reconfigurable fabric.  

1. INTRODUCTION 

The levels of integration of modern FPGAs have advanced 
to the point where complex SoCs with processors, 
accelerator IP, peripherals, and system software can be 
built and deployed very fast. Tool vendors have offered a 
plethora of predefined IP cores for frequently used kernels 
in multimedia, communications, networking, etc. What is 
missing is a methodology for an application developer to 
extract computationally complex kernels from the 
application and map them to gates in an automated way. 
The availability of a tool flow that abstracts out the 
hardware details of a module or a set of modules and 
presents a familiar software-only programming model will 
be crucial for the acceptance of FPGAs from a large pool 
of software engineers and algorithm developers. 
Central to the design of such a tool is the automated 
selection of an optimal subset of kernels under area 
constraints. Reconfigurable logic is customized post-
fabrication, and has only finite number of logic cells to 
implement an application. It is often the case that the 
hardware designers have to iterate multiple times and 
perform manual software hardware partition of an 
application before a successful generation of the FPGA 
bitstream. This paper describes a methodology for  
automatic selection of kernels in a streaming application 

and their mapping into an network of accelerators. The 
selection is accomplished using intelligent analysis of the 
computational complexity of the kernels and the flow of the 
streaming data between the kernels. Kernels are selected to 
be mapped in gates based not only on their execution time, 
but also on their data communication profile, and their 
inherent parallelism and speed-up potential. The most 
important aspects of the selection process is the efficient 
representation of the streaming domain and the exploration 
of the design space without artificially limiting the potential 
solutions.  
Our methodology is using a holistic approach by considering 
the performance of the whole streaming application. Similar 
work has focused recently on expanding the processor ISA 
by identifying application hotspots [1][2]. The main 
contributions of the papers are the following: first, we 
describe how a streaming application is represented using an 
annotated stream flow graph (SFG) and we outline the 
metrics used for the annotation. Second, we detail the 
algorithms used to select a near optimal set of kernels to be 
mapped into gates based on the annotated SFG. Although the 
focus of the paper are FPGAs, the techniques described can 
be naturally extended for ASICs.  
The rest of the paper is organized as follows: Section 2 gives 
background information on the streaming programming 
paradigm, explains the structure and attributes of the SFG, 
and describes the algorithms used to select the kernels to be 
mapped in gates under area constraints. Section 3 presents 
results for a set of streaming applications, and section 4 
concludes the paper.  

2. STREAMING KERNEL SELECTION  

2.1. Streaming programming model 

Programs that follow the streaming paradigm are expressed 
as an interconnect of filters that communicate using streams. 
The streaming programming model separates 
communication from computation, and favors data intensive 
applications with a regular memory access patterns [3]. 
Properties of streaming model of computation include [4]:  

• Computation kernels are independent and self-
contained 

Computation kernels are localized such that there are no data 
dependencies between other kernels. A programmer can 



annotate portions of a program that exhibit this behavior 
for mapping onto a stream processor or accelerator.  
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• Computation groups are relatively static 
The processing performed in each computation group is 
regular or repetitive, which often come in the form of a 
loop structure. There are opportunities for compiler 
optimization to organize the computation as well as the 
regular access patterns to memory. 

• Explicit definition of communication 
Computation kernels produce output streams from one or 
more input streams. The stream and other scalar values 
which hold persistent application state are identified 
explicitly as variables in a communication stream or signal 
between kernels.  

• Limited lifetime of the stream data 
There is a small amount of reuse for each stream element. 
Each stream is usually consumed by one or more kernels, 
which perform little processing on each stream. 
In this work, the location and shape of streams in the 
memory is defined using stream descriptors [5]. The tuple 
(Type, Start_Address, Stride, Span, Skip, Size) can 
describe a stream with elements of Type stored as a 2D 
array starting at location Start_Address, so that: 
• Stride is the spacing, in number of elements, between 

two consecutive stream elements. 
• Span is the number of elements that are gathered 

before applying the skip offset  
• Skip is the offset is applied between groups of span 

elements, after the stride has been applied  
• Size is the number of elements in the stream  

Multidimensional and even non-rectangular stream shapes 
can be described by extending the tuple definition of the 
streams. An example of 2D stream is shown in Figure 1. 

2.2. Method Overview 

The objective of an automated method for streaming 
kernel selection is to be used as part of a high level tool 
that drives the system level architecture of the network of 
accelerators. The algorithm for kernel selection is shown 
in Figure 2. 
The application is expressed using explicit streaming 
constructs that identify the computational kernels and the 
streaming channels used to transfer data. We are using a 
programming model, that expresses streaming kernels 
using Data Flow Graphs (DFGs), and streams using stream 
descriptors [6]. The programmer or a high level compiler 
analyze the program and identify critical computational 
kernels in the code that will be executed by a streaming 
accelerator. The kernels are translated to a machine 
independent DFG, in which all the data dependencies are 
explicitly stated in order to facilitate parallel execution.  
System level constraints such as maximum available area 
in number of CLBs or equivalent gates, and available 
memory and bus bandwidth are given as input to constrain 

the problem. Finally, profiling data of the execution time of 
each kernel, and its bandwidth can be optionally used if 
available. Due to the static and regular nature of computation 
and communication in the streaming domain, prior runs of 
the applications may be unnecessary for some applications. 
The first step of the kernel selection is to build the SFG data 
structure, based on the streaming data flow and the available 
hardware resources that participate in the application. Then, 
the nodes and edges of the SFG are annotated with metrics 
that summarize the execution profile of the application, and 
form the basis for the solution space exploration in the next 
step. In this work, we describe two strategies to select 
kernels. The first strategy is to iteratively select streaming 
kernels based simply on their annotation in the SFG. The 
second strategy adapts to the current selections that have 
already been made and continuously changes the annotation 
of the unselected kernels to better capture the dynamic nature 
of the selection process. For example, the second strategy 
favor neighboring kernel nodes of already selected kernels  
in order to improve the data locality of the communication 
and avoid costly transfer to the main memory.  
A list of kernels sorted with respect to their selection order is 
produced at the end. One of the strength of the method is that 
no assumptions is made on the number and type of 
accelerators used for the low level implementation. For 
instance, all the selected kernels of the application can be 
mapped into a single accelerator, or each kernel to a 
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Figure 1  Stream descriptors for a row-wise  
memory access pattern 
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Figure 2 High level kernel selection diagram 



dedicated accelerator, or any hybrid implementation 
between these two extremes.  

2.3. Annotated stream flow graph (SFG) 

The stream flow graph of an application program Pin a 
system S is a directed graph G(P,S) =(V,E) in which: 

• a vertex  can be one of the following types: 
kernel node that expresses streaming 
computation, buffer node that expresses 
temporary buffers, main memory node that 
expresses off-chip main memory, and peripheral 
node that expresses peripherals that source or 
sink streams (e.g. image sensors or LCD 
displays).  

Vu ∈

• an edge connects two nodes if there 
is a stream produced by u and consumed by v.  

Evue ∈= ),(

The SFG depends on the application and the 
architecture of the system. The application determines the 
structure of the SFG, while the system determines the 
type of nodes that are available and how they can be used.  

The SFG expresses static, as opposed to dynamic, 
stream flow. There is an edge between two nodes u and v 
if there is a stream flow between them, and also a thread 
of control in the code in which first u and then v is 
executed (or accessed), even if that thread is not executed 
in the dynamic program. For instance, in case of a 
conditional if-then-else or case statement, there will be 
edges between all potential paths between kernels.  

The SFG is built as a preprocessing step during 
compilation time. If the programmer or an optimizing 
compiler uses loop tiling to partition the kernel execution 
across data tiles and to place the communicating streams 
in tile buffers, the SFG preprocessor instantiates buffer 
nodes. Otherwise, it instantiates main memory nodes. The 
preprocessing step of Figure 2 can be used after a source-
level optimizing compiler that performs tiling but it does 
not perform any source code optimizations by itself.  

Figure 3 shows the SFG for a tiled implementation of 
an image processing chain used for processing Bayer 
color data produced by an image sensor. Tiled frame data 
are processed by computation kernels one tile at a time. If 
the programmer did not use tiling, the SFG would contain 
main memory nodes in between the kernels.  

The annotation of SFG nodes is used to capture 
dynamic execution activity, when the application is driven 
by a set of input data. Each kernel node  is assigned 
a value using the guide function , and a cost . 
The purpose of the SFG annotation is to intelligently rank 
the kernel nodes so that the best candidates are used for 
hardware implementation. The guide function is a 
weighted sum of three metrics that are used to grade the 

computational complexity, the bandwidth, and the potential 
for parallelism of the kernel: 
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Figure 3 The Stream Flow Graph for the tiled version of 
the Image Processing Chain benchmark. Each node u is 
annotated with the computational metric n(u), the 
parallelism metric p(u) (not shown in the Figure), and the 
area cost a(u). Each edge is annotated with the bandwidth 
metric b(u). 

The metrics are determined by profiling data or, in some 
cases, by static analysis of the application code. Different 
weights wi will affect the types of candidates selected. The 
rest of this section details how the parameters of the guide 
functions are evaluated and what are the trade-offs.  

The computational metric is the execution time of 
kernel u as a percentage of the sum of execution times of all 
kernel nodes in V. The metric assumes a perfect memory 
system, and it represents only the percentage of computation 
time, and not of memory accesses overhead. For instance, 
the Low Pass Filter kernel accounts for 21% of the 
execution time of all streaming kernels  in 
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Figure 3.  
The bandwidth metric  of edge e equals the number 

of bytes that were transferred via edge e as a percentage of 
all bytes transferred between all edges in SFG. For a node u, 
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Low Pass Filter kernel bwin(u) = 0.7*3 = 0.21 and 
bwout(u) = 0.06 

The purpose of this metric is to include kernels that 
process large amount of streaming data. By selecting 
them, the algorithm can form clusters of high 
bandwidth kernels so that the data are not transferred 
back and forth between the accelerators and the 
memory. We will come back to this observation in the 
following section. 

The metric considers the complexity of the 
memory access pattern of node u to evaluate the 
potential for speed up when u is mapped to gates. The 
largest performance gains are possible when the 
streams in and out of the kernel have regular access 
patterns similar in shape to the order with which data 
are stored in the main memory (e.g. row-wise). 
Memory-bound kernels are restricted by the memory 
access inefficiencies even if a large number of 
functional units are used to implement the computations. 
For our methodology: 
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in which S is the set of all the streams consumed and 
produced by u, and SAE(s), or stream access efficiency, is 
the number of stream elements of stream s fetched in 
every bus cycle, on average. Kernels with a large number 
of I/O streams, and low stream access efficiency, are less 
likely to be selected. When a kernel is used in multiple 
locations in the application (potentially with different 
stream descriptors), the algorithm uses a weighted 
average value of the SAE values.  

As an example, consider the simple vector add DFG 
kernel of Figure 4. Assuming that the system bus can 
fetch 8 bytes per cycle, the SAE values are: 

 SAE(v1) = 4/8 = 0.5, 
 SAE(v2) = 1/8 = 0.125, 
 SAE(v0) = 8/8 = 1 

28.04/)1125.05.0()( =++=up  
The cost of selecting a node u is equal to the area 

complexity of the node a(u). Since the area of the 
accelerator implementation is unknown before scheduling 
and binding is performed, the algorithm uses an area 
estimation metric that is proportional to the number, type, 
and bitwidth of the nodes of the DFG of node u. To that 
effect, a predefined hardware table is used that stores the 
area cost of each node type of the DFG. The hardware 
table was estimated using implementations of functional 
units in a Xilinx Virtex-4 FPGA. This cost is scaled to 
match the bitwidth of the specific node. The hardware 
table considers the area complexity of computational 
nodes, and of stream push and pop nodes. These nodes 
create streaming units that are separate from the data path 

but contribute substantially to the final area. 
Although the area of the accelerator that will finally 

implement the node u is probably different than what this 
method computes, what is important in this step is the 
consistency of the area estimation. In other words, a more 
complex kernel with a higher cost a(u) should also be 
implemented in a larger accelerator. More details on the 
methodology of pre-synthesis area estimation can be found 
in [5].  

The weights wi are user defined. The weight w2 is equal to 
zero for SFG edges that correspond to a transfer of 
streaming data between a kernel and the main memory. In 
that case, selecting neighboring kernels does not offer any 
advantages because the streams will be stored to main 
memory, and temporary storage is not possible.  

2.4. SFG space exploration and kernel selection 

Based on the SFG formulation, the next step is the selection 
of an optimal set of kernels that maximizes the value V 
under an area constraint A. The selection is similar to the 0/1 
knapsack problem, which is NP-complete. Given a set of 
resources (the kernel nodes), with each resource having a 
value f(u) and cost a(u), the objective is to maximize the 
value of selected resources for given maximum area A. The 
problem can be solved optimally in pseudo-polynomial time 
using dynamic algorithms. As the experiments show, a 
simple greedy algorithm works almost as well as the 
dynamic algorithm shown in Figure 5. In the greedy 

algorithm, the next kernel u with the highest 
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Figure 4 A simple vector add DFG 

) is 

selected. In dynamic algorithm of Figure 5, the 
DYN_COST_1 procedure is called first to compute the 
value array, in which the entry C[i][a] contains the 
maximum value when only i kernels are present, and the 



maximum area is a. Then, DYN_SEL_1 traverses the 
array C to select the set of kernels. Our approach is 
extended to adapt to the dynamic flow by favoring kernel 
nodes that are adjacent to already selected nodes. Once a 
kernel node u is selected, the value f(v) of all nodes v that 
are connected with u via a buffer node is scaled up by a 
user defined factor wrel. This dynamic  update facilitates 
the clustering of nodes so that streaming data do not need 
to be accessed from memory unnecessarily. The dynamic 
programming heuristic generally does better than greedy 
approaches but the difference is small especially if the 
problem size is small, i.e. there is a small number of 
kernels in the application. 

3. EXPERIMENTAL EVALUATION 

The proposed system was built as part of a streaming 
compiler infrastructure [7]. The kernel selection 
algorithms were implemented as a separate module from 
the main compiler, simulator and profiler. We used 
several streaming applications written for the RSVP™ 
accelerator to evaluate the kernel selection methodology. 
The benchmarks were an image processing application 
(impchain) used to perform a sequence of color 

processing and color conversion filters on a image sensor 
input frame (Figure 3), a license plate recognition 
application used to identify vehicles based on their license 

 
DYN_COST_1 
Input: f[0..N-1], a[0..A-1], N, A;   
Output: C[0..N-1]; 
 { 

 C[0, 0..A] = 0;  
 C[0..N, 0] = 0; 
 for (i = 0; i  N; i++) { ≤
   for (a = 1; a ≤  A; a++) { 
       if (ai > a) 
           C[i, a] = C[i-1, a] 
       else  
           C[i, a] = max{C[i-1, a], f(ui) + C[i-1, a- ai]} 
      } 

   } 
   return C; 
} 
 
DYN_SEL_1  
Input: C[0..N][0..A], a[0..A-1], v[0..N-1], N, A  
Output: ranked nodes R 
 { 

   i = N; j = A; 
  R={}; 
   while (i > 0 && j > 0) { 
       tmp = a[i-1]; 
       if (C[i-1][j] f[i-1] + C[i-1][j-tmp])  ≥
           i = i-1 
       else { 
          if (i > 0 && j > tmp) { 
            R = R u∪ i 

            j = j – tmp;  
          } 
          i = i-1; 
       } 
   } 
   return R; 

 } 

Figure 5 Dynamic algorithm for kernel selection 
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Figure 6 Speedup for various benchmarks. The NOBFR 
legend means that the streaming application was written 
without temporary storage fo streams between kernels 

(i.e. the streams are always read and written from/to the 
main memory. The rest of the curves assume intermediate 

buffering of at least one of the streams.  



plates, a JPEG2000 image compression/decompression 
program, and an automotive lane departure warning 
application used to detect road lanes for driver 
assistance. We are selecting applications with multiple 
streaming kernels with a complex streaming flow to 
better illustrate the feasibility of the approach. We used 
profiling and static analysis on each of the applications 
to determine the value and cost of each streaming 
kernel. The area cost estimates in the hardware library 
were calculated by implementing and synthesizing 
every DFG node, as explained in section 2.3. The area 
cost of a kernel is approximated as the sum of the costs 
of all the nodes of that kernel.  

 The baseline machine for the experiments is an 
ARM946 RISC processor, and the speedup ratios of 
Figure 6 are expressed with respect to the baseline 
performance as the area cost varies. Each line in an 
application represents the speedup of the application 
compared to the baseline machine for a specific set of 
selection criteria (values of weights wi). We experimented 
with various combinations of weight values to determine 
if there were combinations that consistently resulted in 
higher speed up at each area cost point. The experimental 
analysis showed that the weight combinations were 
slightly different for each benchmark. However, the 

metric was consistently weighed more for higher 
speed ups, as shown in the results of 

)(un
Figure 6.  

One of the interesting observations is that the speedup 
varies a lot across benchmarks. The impchain and ldw 
benefit a lot from hardware acceleration because almost 
all of their computation is a series of kernel filters. The 
other benchmarks have a large portion of the program 
being spent on branches and pointer operations that hinder 
mapping on streaming computations.  

The dynamic update of kernel values was used only in 
the impchain and ldw benchmarks because these 
application are using tiling  (w2 > 0). The three curves in 
each benchmark correspond to different values of the 
weights:  

a) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 1,  
b) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 2 and, 
c) w1 = 0.5, w2 = 0, w3 = 0.3, wrel = 1. 
When  wrel  > 1, the dynamic kernel update props up the 

value of all the neighbours of a selected kernel by a factor 
of  wrel .

For the lpr and the JPEG2000, we set w2 = 0, wrel = 1, 
because all the streams in between kernels are spilled to 
the main memory, and there are no buffer nodes between 
kernels (NOBFR). The dynamic update of the node values 
does not always result in a better solution for a given area 
limit, because it may favor kernels that contribute less in 
the total execution time even if they are neighbors of 
already selected nodes.  

In the experimental evaluation of Figure 6, every kernel 
selection includes all appearances of the kernel in the 
application. There are cases where the kernel hardware 

can be generalized to execute more than one kernel with 
little or no extra area cost. For example, an accelerator that 
computes the dot product of two complex vectors can be 
used to compute the sum of two integer vectors. The 
continuous lines of Figure 7 show the speedup when no 
generalization is supported, and the dashed lines show the 
speedup when the hardware is extended to support the 
execution of a similar but no larger kernel that has not yet 
been selected.  

The experiment shows that hardware generalization is a 
very useful mechanism in some cases. For example, almost 
all the DFGs of the JPEG2000 benchmark are similar, and 
can be mapped to the same hardware without any extra area 
penalty. The impchain and ldw benchmarks, on the other 
hand, consist of large kernels with limited commonality. 
Using graph generalization is particularly important in cases 
of limited area budget.  

4. CONCLUSION 

Hardware accelerators customized for a particular task 
and implemented in hardware are an efficient way to 
enhance system performance and meet application 
requirements. This paper presents a methodology to 
automate the selection of streaming kernels that are mapped 
in hardware accelerators in a reconfigurable fabric. The 
methodology is flexible and can be tuned by the user to 
match the application and the targeted device characteristics. 
It exploits the parallelism inherent in a lot of applications 
and has demonstrated that a small amount of extra fabric 
area can result into significant performance gains. In the 
future, we plan to integrate this tool to a larger architectural 
synthesis program that automates the generation of 
hardware given a high level representation of an application. 
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