
AN ARCHITECTURAL FRAMEWORK FOR AUTOMATED STREAMING
KERNEL SELECTION

Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier

Embedded System Research Lab
 Motorola, Inc.

 {nikos.bellas@motorola.com}

ABSTRACT

Hardware accelerators are increasingly used to extend the
computational capabilities of baseline scalar processors to
meet the growing performance and power requirements of
embedded applications. The challenge to the designer is
the extensive human effort required to identify the
appropriate kernels to be mapped to gates, and to
implement a network of accelerators to execute the
kernels. In this paper, we present a methodology to
automate the selection of streaming kernels in a
reconfigurable platform based on the characteristics of the
application. The methodology is based on a flow graph
that describes the streaming computations and
communications. The flow graph is used to efficiently
identify the most profitable subset of streaming kernels
that optimize performance without exceeding the available
area of the reconfigurable fabric.

1. INTRODUCTION

The levels of integration of modern FPGAs have advanced
to the point where complex SoCs with processors,
accelerator IP, peripherals, and system software can be
built and deployed very fast. Tool vendors have offered a
plethora of predefined IP cores for frequently used kernels
in multimedia, communications, networking, etc. What is
missing is a methodology for an application developer to
extract computationally complex kernels from the
application and map them to gates in an automated way.
The availability of a tool flow that abstracts out the
hardware details of a module or a set of modules and
presents a familiar software-only programming model will
be crucial for the acceptance of FPGAs from a large pool
of software engineers and algorithm developers.
Central to the design of such a tool is the automated
selection of an optimal subset of kernels under area
constraints. Reconfigurable logic is customized post-
fabrication, and has only finite number of logic cells to
implement an application. It is often the case that the
hardware designers have to iterate multiple times and
perform manual software hardware partition of an
application before a successful generation of the FPGA
bitstream. This paper describes a methodology for
automatic selection of kernels in a streaming application

and their mapping into an network of accelerators. The
selection is accomplished using intelligent analysis of the
computational complexity of the kernels and the flow of the
streaming data between the kernels. Kernels are selected to
be mapped in gates based not only on their execution time,
but also on their data communication profile, and their
inherent parallelism and speed-up potential. The most
important aspects of the selection process is the efficient
representation of the streaming domain and the exploration
of the design space without artificially limiting the potential
solutions.
Our methodology is using a holistic approach by considering
the performance of the whole streaming application. Similar
work has focused recently on expanding the processor ISA
by identifying application hotspots [1][2]. The main
contributions of the papers are the following: first, we
describe how a streaming application is represented using an
annotated stream flow graph (SFG) and we outline the
metrics used for the annotation. Second, we detail the
algorithms used to select a near optimal set of kernels to be
mapped into gates based on the annotated SFG. Although the
focus of the paper are FPGAs, the techniques described can
be naturally extended for ASICs.
The rest of the paper is organized as follows: Section 2 gives
background information on the streaming programming
paradigm, explains the structure and attributes of the SFG,
and describes the algorithms used to select the kernels to be
mapped in gates under area constraints. Section 3 presents
results for a set of streaming applications, and section 4
concludes the paper.

2. STREAMING KERNEL SELECTION

2.1. Streaming programming model

Programs that follow the streaming paradigm are expressed
as an interconnect of filters that communicate using streams.
The streaming programming model separates
communication from computation, and favors data intensive
applications with a regular memory access patterns [3].
Properties of streaming model of computation include [4]:

• Computation kernels are independent and self-
contained

Computation kernels are localized such that there are no data
dependencies between other kernels. A programmer can

annotate portions of a program that exhibit this behavior
for mapping onto a stream processor or accelerator.

0

7

14

21

1 2

8 9

15 16

22 23

3 4

10 11

17 18

24 25

5 6

12 13

19 20

26 27

• Computation groups are relatively static
The processing performed in each computation group is
regular or repetitive, which often come in the form of a
loop structure. There are opportunities for compiler
optimization to organize the computation as well as the
regular access patterns to memory.

• Explicit definition of communication
Computation kernels produce output streams from one or
more input streams. The stream and other scalar values
which hold persistent application state are identified
explicitly as variables in a communication stream or signal
between kernels.

• Limited lifetime of the stream data
There is a small amount of reuse for each stream element.
Each stream is usually consumed by one or more kernels,
which perform little processing on each stream.
In this work, the location and shape of streams in the
memory is defined using stream descriptors [5]. The tuple
(Type, Start_Address, Stride, Span, Skip, Size) can
describe a stream with elements of Type stored as a 2D
array starting at location Start_Address, so that:
• Stride is the spacing, in number of elements, between

two consecutive stream elements.
• Span is the number of elements that are gathered

before applying the skip offset
• Skip is the offset is applied between groups of span

elements, after the stride has been applied
• Size is the number of elements in the stream

Multidimensional and even non-rectangular stream shapes
can be described by extending the tuple definition of the
streams. An example of 2D stream is shown in Figure 1.

2.2. Method Overview

The objective of an automated method for streaming
kernel selection is to be used as part of a high level tool
that drives the system level architecture of the network of
accelerators. The algorithm for kernel selection is shown
in Figure 2.
The application is expressed using explicit streaming
constructs that identify the computational kernels and the
streaming channels used to transfer data. We are using a
programming model, that expresses streaming kernels
using Data Flow Graphs (DFGs), and streams using stream
descriptors [6]. The programmer or a high level compiler
analyze the program and identify critical computational
kernels in the code that will be executed by a streaming
accelerator. The kernels are translated to a machine
independent DFG, in which all the data dependencies are
explicitly stated in order to facilitate parallel execution.
System level constraints such as maximum available area
in number of CLBs or equivalent gates, and available
memory and bus bandwidth are given as input to constrain

the problem. Finally, profiling data of the execution time of
each kernel, and its bandwidth can be optionally used if
available. Due to the static and regular nature of computation
and communication in the streaming domain, prior runs of
the applications may be unnecessary for some applications.
The first step of the kernel selection is to build the SFG data
structure, based on the streaming data flow and the available
hardware resources that participate in the application. Then,
the nodes and edges of the SFG are annotated with metrics
that summarize the execution profile of the application, and
form the basis for the solution space exploration in the next
step. In this work, we describe two strategies to select
kernels. The first strategy is to iteratively select streaming
kernels based simply on their annotation in the SFG. The
second strategy adapts to the current selections that have
already been made and continuously changes the annotation
of the unselected kernels to better capture the dynamic nature
of the selection process. For example, the second strategy
favor neighboring kernel nodes of already selected kernels
in order to improve the data locality of the communication
and avoid costly transfer to the main memory.
A list of kernels sorted with respect to their selection order is
produced at the end. One of the strength of the method is that
no assumptions is made on the number and type of
accelerators used for the low level implementation. For
instance, all the selected kernels of the application can be
mapped into a single accelerator, or each kernel to a

3 90

2-D Subarray with row-wise access

(Type, SA, Stride, Span, Skip, Size) =
(0, 3, 1, 7, 93, 28)

Figure 1 Stream descriptors for a row-wise
memory access pattern

Streaming code
(e.g. C+RSVP DFG)

Constraints:
Maximum area,

data throughput, etc

Constraints:
Maximum area,

data throughput, etc

Profile Data
(Optional)

SFG space explorer
and kernel selection

SFG
annotation

Build the Stream Flow
Graph (SFG)

Ranked List of
Kernels

Figure 2 High level kernel selection diagram

dedicated accelerator, or any hybrid implementation
between these two extremes.

2.3. Annotated stream flow graph (SFG)

The stream flow graph of an application program Pin a
system S is a directed graph G(P,S) =(V,E) in which:

• a vertex can be one of the following types:
kernel node that expresses streaming
computation, buffer node that expresses
temporary buffers, main memory node that
expresses off-chip main memory, and peripheral
node that expresses peripherals that source or
sink streams (e.g. image sensors or LCD
displays).

Vu ∈

• an edge connects two nodes if there
is a stream produced by u and consumed by v.

Evue ∈=),(

The SFG depends on the application and the
architecture of the system. The application determines the
structure of the SFG, while the system determines the
type of nodes that are available and how they can be used.

The SFG expresses static, as opposed to dynamic,
stream flow. There is an edge between two nodes u and v
if there is a stream flow between them, and also a thread
of control in the code in which first u and then v is
executed (or accessed), even if that thread is not executed
in the dynamic program. For instance, in case of a
conditional if-then-else or case statement, there will be
edges between all potential paths between kernels.

The SFG is built as a preprocessing step during
compilation time. If the programmer or an optimizing
compiler uses loop tiling to partition the kernel execution
across data tiles and to place the communicating streams
in tile buffers, the SFG preprocessor instantiates buffer
nodes. Otherwise, it instantiates main memory nodes. The
preprocessing step of Figure 2 can be used after a source-
level optimizing compiler that performs tiling but it does
not perform any source code optimizations by itself.

Figure 3 shows the SFG for a tiled implementation of
an image processing chain used for processing Bayer
color data produced by an image sensor. Tiled frame data
are processed by computation kernels one tile at a time. If
the programmer did not use tiling, the SFG would contain
main memory nodes in between the kernels.

The annotation of SFG nodes is used to capture
dynamic execution activity, when the application is driven
by a set of input data. Each kernel node is assigned
a value using the guide function , and a cost .
The purpose of the SFG annotation is to intelligently rank
the kernel nodes so that the best candidates are used for
hardware implementation. The guide function is a
weighted sum of three metrics that are used to grade the

computational complexity, the bandwidth, and the potential
for parallelism of the kernel:

Vu ∈
)(uf)(uc

)(*))()((*)(*)(321 upwutbwubwwunwuf ouin +++=
so that: 1321 =++ www

Mean Values of
GRGB pixels

White balance-Color
interpolation

Low Pass Filter

Gamma Correction

RGB to YCC
conversion

High pass Filter

Peripheral

MM

MM

n2=0.14
a2=1789

n3=0.21
a3=1280

n4=0.24
a4=489

n5=0.12
a5=750

n6=0.19
a6=1124

n7=0.08
a7=514

n1=0.005
a1=226

Buffer

Color correction

bw1(v1) = 0.01
bw1(v2) = 0.01bw2(v1) = 0.02 bw2(v2) = 0.02

bw2(v0) = 0.07

 0.07

0.06

 0.06

 0.06

bw5(v1) = 0.06

bw5(v0) = 0.06

0.06

bw6(v0) = 0.06

bw7(v1) = 0.09

bw7(v0) = 0.03

 0.07
 0.07

0.06
0.06

Figure 3 The Stream Flow Graph for the tiled version of
the Image Processing Chain benchmark. Each node u is
annotated with the computational metric n(u), the
parallelism metric p(u) (not shown in the Figure), and the
area cost a(u). Each edge is annotated with the bandwidth
metric b(u).

The metrics are determined by profiling data or, in some
cases, by static analysis of the application code. Different
weights wi will affect the types of candidates selected. The
rest of this section details how the parameters of the guide
functions are evaluated and what are the trade-offs.

The computational metric is the execution time of
kernel u as a percentage of the sum of execution times of all
kernel nodes in V. The metric assumes a perfect memory
system, and it represents only the percentage of computation
time, and not of memory accesses overhead. For instance,
the Low Pass Filter kernel accounts for 21% of the
execution time of all streaming kernels in

)(un

Figure 3.
The bandwidth metric of edge e equals the number

of bytes that were transferred via edge e as a percentage of
all bytes transferred between all edges in SFG. For a node u,

)(eb

∑= inedges
in ebubw)()(, and bw or the ∑= outedges

out ebu)()(. F

Low Pass Filter kernel bwin(u) = 0.7*3 = 0.21 and
bwout(u) = 0.06

The purpose of this metric is to include kernels that
process large amount of streaming data. By selecting
them, the algorithm can form clusters of high
bandwidth kernels so that the data are not transferred
back and forth between the accelerators and the
memory. We will come back to this observation in the
following section.

The metric considers the complexity of the
memory access pattern of node u to evaluate the
potential for speed up when u is mapped to gates. The
largest performance gains are possible when the
streams in and out of the kernel have regular access
patterns similar in shape to the order with which data
are stored in the main memory (e.g. row-wise).
Memory-bound kernels are restricted by the memory
access inefficiencies even if a large number of
functional units are used to implement the computations.
For our methodology:

)(up

1||
)(S s

+
=
∑
∈∀

S

SAE(S)

up

in which S is the set of all the streams consumed and
produced by u, and SAE(s), or stream access efficiency, is
the number of stream elements of stream s fetched in
every bus cycle, on average. Kernels with a large number
of I/O streams, and low stream access efficiency, are less
likely to be selected. When a kernel is used in multiple
locations in the application (potentially with different
stream descriptors), the algorithm uses a weighted
average value of the SAE values.

As an example, consider the simple vector add DFG
kernel of Figure 4. Assuming that the system bus can
fetch 8 bytes per cycle, the SAE values are:

 SAE(v1) = 4/8 = 0.5,
 SAE(v2) = 1/8 = 0.125,
 SAE(v0) = 8/8 = 1

28.04/)1125.05.0()(=++=up
The cost of selecting a node u is equal to the area

complexity of the node a(u). Since the area of the
accelerator implementation is unknown before scheduling
and binding is performed, the algorithm uses an area
estimation metric that is proportional to the number, type,
and bitwidth of the nodes of the DFG of node u. To that
effect, a predefined hardware table is used that stores the
area cost of each node type of the DFG. The hardware
table was estimated using implementations of functional
units in a Xilinx Virtex-4 FPGA. This cost is scaled to
match the bitwidth of the specific node. The hardware
table considers the area complexity of computational
nodes, and of stream push and pop nodes. These nodes
create streaming units that are separate from the data path

but contribute substantially to the final area.
Although the area of the accelerator that will finally

implement the node u is probably different than what this
method computes, what is important in this step is the
consistency of the area estimation. In other words, a more
complex kernel with a higher cost a(u) should also be
implemented in a larger accelerator. More details on the
methodology of pre-synthesis area estimation can be found
in [5].

The weights wi are user defined. The weight w2 is equal to
zero for SFG edges that correspond to a transfer of
streaming data between a kernel and the main memory. In
that case, selecting neighboring kernels does not offer any
advantages because the streams will be stored to main
memory, and temporary storage is not possible.

2.4. SFG space exploration and kernel selection

Based on the SFG formulation, the next step is the selection
of an optimal set of kernels that maximizes the value V
under an area constraint A. The selection is similar to the 0/1
knapsack problem, which is NP-complete. Given a set of
resources (the kernel nodes), with each resource having a
value f(u) and cost a(u), the objective is to maximize the
value of selected resources for given maximum area A. The
problem can be solved optimally in pseudo-polynomial time
using dynamic algorithms. As the experiments show, a
simple greedy algorithm works almost as well as the
dynamic algorithm shown in Figure 5. In the greedy

algorithm, the next kernel u with the highest
)(

(
ua
uf

vadd

vst (v0)

Stream V0

vld (v1) vld (v2)

0 1 2 30 1 2 3 0 1 2 34 5 6 7 0 1 28 9 10 211 212 213 214 215

Stream V1

92

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4 92

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4 92

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

4 92

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

4

Stream V2

Figure 4 A simple vector add DFG

) is

selected. In dynamic algorithm of Figure 5, the
DYN_COST_1 procedure is called first to compute the
value array, in which the entry C[i][a] contains the
maximum value when only i kernels are present, and the

maximum area is a. Then, DYN_SEL_1 traverses the
array C to select the set of kernels. Our approach is
extended to adapt to the dynamic flow by favoring kernel
nodes that are adjacent to already selected nodes. Once a
kernel node u is selected, the value f(v) of all nodes v that
are connected with u via a buffer node is scaled up by a
user defined factor wrel. This dynamic update facilitates
the clustering of nodes so that streaming data do not need
to be accessed from memory unnecessarily. The dynamic
programming heuristic generally does better than greedy
approaches but the difference is small especially if the
problem size is small, i.e. there is a small number of
kernels in the application.

3. EXPERIMENTAL EVALUATION

The proposed system was built as part of a streaming
compiler infrastructure [7]. The kernel selection
algorithms were implemented as a separate module from
the main compiler, simulator and profiler. We used
several streaming applications written for the RSVP™
accelerator to evaluate the kernel selection methodology.
The benchmarks were an image processing application
(impchain) used to perform a sequence of color

processing and color conversion filters on a image sensor
input frame (Figure 3), a license plate recognition
application used to identify vehicles based on their license

DYN_COST_1
Input: f[0..N-1], a[0..A-1], N, A;
Output: C[0..N-1];
 {

 C[0, 0..A] = 0;
 C[0..N, 0] = 0;
 for (i = 0; i N; i++) { ≤
 for (a = 1; a ≤ A; a++) {
 if (ai > a)
 C[i, a] = C[i-1, a]
 else
 C[i, a] = max{C[i-1, a], f(ui) + C[i-1, a- ai]}
 }

 }
 return C;
}

DYN_SEL_1
Input: C[0..N][0..A], a[0..A-1], v[0..N-1], N, A
Output: ranked nodes R
 {

 i = N; j = A;
 R={};
 while (i > 0 && j > 0) {
 tmp = a[i-1];
 if (C[i-1][j] f[i-1] + C[i-1][j-tmp]) ≥
 i = i-1
 else {
 if (i > 0 && j > tmp) {
 R = R u∪ i

 j = j – tmp;
 }
 i = i-1;
 }
 }
 return R;

 }

Figure 5 Dynamic algorithm for kernel selection

Sp
ee

du
p

lpr

Area Cost

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

NOBFR

0

1

2

3

4

5

6

7

8

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

Wrel=1, BFR

Wrel=2, BFR

NOBFR

Sp
ee

du
p

Area Cost

Sp
ee

du
p

jpeg2000

Area Cost

1

1.05

1.1

1.15

1.2

1.25

NOBFR

lpr

impchain

w1=0.5, w2=0.2, w3=0.3

w1=0.67, w2=0, w3=0.33

w1=0.67, w2=0, w3=0.33

0

1

2

3

4

5

6

7

8

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
50

00

Wrel=1, BFR

Wrel=2, BFR

NOBFR

Sp
ee

du
p

Area Cost

ldw

w1=0.5, w2=0.2, w3=0.3

Figure 6 Speedup for various benchmarks. The NOBFR
legend means that the streaming application was written
without temporary storage fo streams between kernels

(i.e. the streams are always read and written from/to the
main memory. The rest of the curves assume intermediate

buffering of at least one of the streams.

plates, a JPEG2000 image compression/decompression
program, and an automotive lane departure warning
application used to detect road lanes for driver
assistance. We are selecting applications with multiple
streaming kernels with a complex streaming flow to
better illustrate the feasibility of the approach. We used
profiling and static analysis on each of the applications
to determine the value and cost of each streaming
kernel. The area cost estimates in the hardware library
were calculated by implementing and synthesizing
every DFG node, as explained in section 2.3. The area
cost of a kernel is approximated as the sum of the costs
of all the nodes of that kernel.

 The baseline machine for the experiments is an
ARM946 RISC processor, and the speedup ratios of
Figure 6 are expressed with respect to the baseline
performance as the area cost varies. Each line in an
application represents the speedup of the application
compared to the baseline machine for a specific set of
selection criteria (values of weights wi). We experimented
with various combinations of weight values to determine
if there were combinations that consistently resulted in
higher speed up at each area cost point. The experimental
analysis showed that the weight combinations were
slightly different for each benchmark. However, the

metric was consistently weighed more for higher
speed ups, as shown in the results of

)(un
Figure 6.

One of the interesting observations is that the speedup
varies a lot across benchmarks. The impchain and ldw
benefit a lot from hardware acceleration because almost
all of their computation is a series of kernel filters. The
other benchmarks have a large portion of the program
being spent on branches and pointer operations that hinder
mapping on streaming computations.

The dynamic update of kernel values was used only in
the impchain and ldw benchmarks because these
application are using tiling (w2 > 0). The three curves in
each benchmark correspond to different values of the
weights:

a) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 1,
b) w1 = 0.5, w2 = 0.2, w3 = 0.3, wrel = 2 and,
c) w1 = 0.5, w2 = 0, w3 = 0.3, wrel = 1.
When wrel > 1, the dynamic kernel update props up the

value of all the neighbours of a selected kernel by a factor
of wrel .

For the lpr and the JPEG2000, we set w2 = 0, wrel = 1,
because all the streams in between kernels are spilled to
the main memory, and there are no buffer nodes between
kernels (NOBFR). The dynamic update of the node values
does not always result in a better solution for a given area
limit, because it may favor kernels that contribute less in
the total execution time even if they are neighbors of
already selected nodes.

In the experimental evaluation of Figure 6, every kernel
selection includes all appearances of the kernel in the
application. There are cases where the kernel hardware

can be generalized to execute more than one kernel with
little or no extra area cost. For example, an accelerator that
computes the dot product of two complex vectors can be
used to compute the sum of two integer vectors. The
continuous lines of Figure 7 show the speedup when no
generalization is supported, and the dashed lines show the
speedup when the hardware is extended to support the
execution of a similar but no larger kernel that has not yet
been selected.

The experiment shows that hardware generalization is a
very useful mechanism in some cases. For example, almost
all the DFGs of the JPEG2000 benchmark are similar, and
can be mapped to the same hardware without any extra area
penalty. The impchain and ldw benchmarks, on the other
hand, consist of large kernels with limited commonality.
Using graph generalization is particularly important in cases
of limited area budget.

4. CONCLUSION

Hardware accelerators customized for a particular task
and implemented in hardware are an efficient way to
enhance system performance and meet application
requirements. This paper presents a methodology to
automate the selection of streaming kernels that are mapped
in hardware accelerators in a reconfigurable fabric. The
methodology is flexible and can be tuned by the user to
match the application and the targeted device characteristics.
It exploits the parallelism inherent in a lot of applications
and has demonstrated that a small amount of extra fabric
area can result into significant performance gains. In the
future, we plan to integrate this tool to a larger architectural
synthesis program that automates the generation of
hardware given a high level representation of an application.

1

10

0
500

1000
1500

2000
2500

3000
3500

4000
4500

5000

im pchain
im pchain subsum ed
lpr kernels

lpr subsum ed
jpeg2000

jpeg2000 subsum ed
ldw

ldw Subsum ed

Figure 7 Speedup due to subsumed kernels (logarithmic scale)

5. REFERENCES

[1] Fei Sun, Ravi, S., Raghunathan, A., N.K. Jha, “Synthesis of
custom processors based on extensible platforms,” Proceedings
of the International Conference on Computer Aided Design
(ICCAD), November 2002, pp. 641-648
[2] Nathan Clark, Hongtao Zhong, Scott Mahlke, “Processor
Accelerator Through Automated Instruction Set Customization,”
Proceedings of the 36th International Conference on
Microarchitecture, December 2003
 [3] Amarasinghe S., Thies B. “Architectures, Languages and
Compilers for the Streaming Domain” in tutorial at the 12th
Annual International Conference on Parallel Architectures and
Compilation Techniques, New Orleans, LA
[4] Sek M. Chai, Nikolaos Bellas, Malcolm, Dwyer, Dan
Linzmeier. “Stream Memory Subsystem in Reconfigurable
Platforms”, in the 2nd Workshop on Architecture Research using
FPGA Platforms (WARFP). February 2006, Austin, TX
[5] Somsubhra Mondal, Seda O. Memik, Nikolaos Bellas. Pre-
synthesis area estimation of reconfigurable streaming
accelerators. 16th International Conference on Field
Programmable Logic and Applications (FPL), August 28-30
2006, Madrid, Spain
 [6] Chirisescu S., et. al. “ The Reconfigurable Streaming Vector
Processor, RSVP™” in Proceedings of the 36th International
Conference on Microarchitecture, December 2003, pp. 141-150,
San Diego, CA
[7] Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan
Linzmeier. “FPGA implementation of a license plate recognition
SoC using automatically generated streaming accelerators” in
the 13th Reconfigurable Architectures Workshop (RAW), April
2006, Rhodes, Greece

	1. INTRODUCTION
	2. STREAMING KERNEL SELECTION
	2.1. Streaming programming model
	2.2. Method Overview
	2.3. Annotated stream flow graph (SFG)
	2.4. SFG space exploration and kernel selection

	3. EXPERIMENTAL EVALUATION
	4. CONCLUSION
	5. REFERENCES

